<table>
<thead>
<tr>
<th>ZAP-X® GYROSCOPIC RADIOSURGERY™</th>
<th>COBALT-60 RADIOSURGERY</th>
<th>CONVENTIONAL & ROBOTIC RADIOSURGERY</th>
</tr>
</thead>
</table>
| **Shielding & Vault Requirements** | Requires costly shielded treatment vault in all instances.
In most settings, eliminates the need for costly radiation vaults.
ZAP-X makes it feasible for simple point-of-care installation at virtually any location, including satellite facilities, physician offices and outpatient surgery centers. | Requires costly shielded treatment vault in all instances.
Necessitates significant security infrastructure.
Requires costly shielded treatment vault in all instances.
Full-body application adds complexity, elevating the need for significant staffing, rigorous training, and resource-intensive QA.
Related complexities may introduce additional risks of mechanical and human error. |
| **SRS Applications** | - Brain
- Head
- Neck | - Brain
- Head
- Neck
- Anywhere in the body
Full-body application adds complexity, elevating the need for significant staffing, rigorous training, and resource-intensive QA.
Related complexities may introduce additional risks of mechanical and human error. |
| **Immmobilization** | Frameless, non-invasive thermoplastic mask immobilization.
ZAP-X enables simple fractionation when clinically indicated. Frameless scan-plan-treat workflow can be broken into independent steps, enabling brief patient-friendly outpatient visits. | Primarily invasive stereotactic frame immobilization.
Contiguous scan-plan-treat workflow requires full-day, on-site patient care.
Optional frameless capability available for some indications.
Primarily thermoplastic mask immobilization.
May accommodate rigid stereotactic frames for some indications. |
| **Target Localization** | 3D patient registration achieved via an integrated planar kilovolt (kV) imaging system.
ZAP-X provides image guidance with automated re-alignment both prior to and throughout each radiosurgical treatment. | Mechanical triangulation via rigid stereotactic frame.
In most cases, provides no intra-fraction image guidance.
Potential target shifts likely to remain undetected, which may result in exposure to surrounding healthy structures.
Conventional Radiosurgery:
Provides cone-beam CT setup image guidance; standard configuration does not provide intra-fraction target imaging or guidance.
Robotic Radiosurgery:
Provides continual intra-fraction kV image guidance and automated re-alignment throughout each treatment. |
| **Treatment Delivery** | Source:
1500 MU/min linear accelerator.
Energy:
3MV - Provides optimal dose coverage for intracranial targets while minimizing whole brain dose; sharpens steep dose gradient necessary for SRS.
Source Axis Distance (SAD):
45cm – Reduces geometric beam penumbra, sharpens steep dose gradient necessary for SRS.
ZAP-X optimizes all aspects of beam delivery to the unique requirements of cranial radiosurgery. | Source:
192 cobalt-60 radioactive sources.
Dose rate ~300MU/min maximum, depending on source age. Sources must be replaced approximately every 5 years. Requires heavy regulation, bureaucratic licensing and continuous heightened security burden.
Energy:
~4MV (effective equivalent).
Source Axis Distance (SAD):
~40–60cm (varies based on model, source sectors used). | Source:
1000-2400 MU/min linear accelerator.
Energy:
6-10MV - Higher energy pushes dose gradient away from the target, while producing additional radiation scatter and non-therapeutic patient dose. May result in additional exposure to surrounding healthy structures.
Source Axis Distance (SAD):
80–100cm - Larger SAD degrades geometric beam penumbra, pushing dose gradient away from the target. |
| **Beam Collimation** | 8 automated spherical collimators (4mm - 25mm).
Tungsten-encased collimator lowers radiation leakage to less than 0.01% of the primary radiation beam.
ZAP-X provides significant reduction in peripheral patient dose as compared to conventional and robotic radiosurgery systems. | Automated 4, 8, and 16mm cones.
Conventional Radiosurgery:
Multi-leaf collimator or optional 7 spherical cones (4mm - 17.5mm).
Robotic Radiosurgery:
Multi-leaf collimator or optional 12 spherical cones (5mm - 60mm). |
| **Dosimetry Validation** | Factory commissioned MV image detector provides a real-time, independently calibrated check of the administered dose.
ZAP-X employs a novel fail-safe mechanism for mitigating the risks of potential mechanical and human error. | No real-time or offline dosimetry capabilities.
Conventional Radiosurgery:
Optional electronic portal imaging devices (EPID) require complex commissioning and may provide limited offline dosimetry capabilities.
Such subsystems have seen very limited clinical acceptance to date.
Robotic Radiosurgery:
No real-time or offline dosimetry capabilities. |